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THE METHOD OF CHARACTERISTICS FOR THE DETERMINATION OF
SUPERSONIC FLOW OVER BODIES OF REVOLUTION
AT SMALL ANGLES OF ATTACK:®

By AxTonio FEREI

SUMMARY

The method of characteristics has been applied for the deter-
mination of the supersonic-flow properties around bodies of
revolution. at a small angle of attack. The system dereloped
constders the effect of the variation of entropy due to the curred
shock and determines a flow that exactly satisfies the boundary
conditions in the limits of the simplifications assumed. Two
practical methods for numerical calculations are given.

INTRODUCTION

For the determination of aerodynamie properties of bodies
of revolution af supersonic speeds, two methods have been
used: & method that uses the small-disturbances theory and
a method thet uses the characteristics theory. Both methods

are successful in the determination of the flow properties for -

bodies at zero angle of attack, but the precision of the small-
disturbances theory decreases when & body of revolution at
an angle of attack is considered.

For bodies of revolution having supersonic flow every-
where, the theory of cheracteristics can elso be used at an
angle of attack.

The method of cheracteristics for the determm&hon of the
fiow field around bodies of revolution at an angle of attack
. was first used by Ferrari (reference 1) in 1936. Ferrari
considers the flow as potential flow and develops a method
for the analysis of the flow field around a body that in the

approximation of potential flow appears to be general and
can be applied to bodies of any shape and with any angle of

attack. In the determination of the flow properties along
the first characteristic surface from which the analysis starts,
however, Ferrari analyzes the flow around a cone of revolu-~
tion, and in this part of the analysis only smell values of
angle of aitack are considered.

- Sauer in 1942 (reference 2) considers the same “problems
and shows that, for small values of angle of attack, the
anelysis of the ﬂow field around a body of revolution can be
made by applying the characteristics method only in one
meridian plane; and, therefore, Sauer uses characteristic
lines in place of the characteristic surfaces considered by
Ferreri. Sauer, in the development of his system, is inter-
ested essentially in the analysis of the flow around circular
cones; end when the method is applied to bodies of revolution
of shepes different from cones, the boundary conditions are

no longer satisfied. The flow obtained from the solution
used, also at small angles of attack, wets a body that is
not & body of revolution. The body can be obtained from
the body of revolution considered initially by curving its
axis of symmetry. Sauer also assumes that the fiow is
potential flow. With this assumption, the flow must be
considered as potential flow for the cese of the body at zero
angle of attack also; therefore, all the effects of entropy
gradients are neglected. i

The flow field around circular cones at small angles of
attack has been analyzed in a more exact form by Stone and
Ferri. (See references 3 to 5.) In his analysis, Stone

considers the flow as rotational flow and, therefore, takes

into account the effect of entropy gradients on the velocity
distribution. This effect exists only when the cone has an
angle of attack and, at low Mach numbers, is small but of the

same order as the effect of other parameters that are con-

sidered in the anslysis. Ferri considers correctly the
entropy distribution at the surface of the cone and found the

‘existance of a vortical layer at the surface of the cone across
which the pressure does not chenge although density and

velocity change,

Here, the method of characteristics is extended to the

analysis of the flow field around a body of revolution et small

angles of attack for the case of rotational flow. The effect

of entropy gradients about bodies of revolution even at small
angles of attack can be important because the entropy

gradients that exist in the stream for small angles of attack

are due to the variation of curvature of the shock existing
at zero angle of attack also, together with the fact that the
shock surface does not have axial symmetry with respect
to the direction of the undisturbed velocity.

The method presented permits the determinstion of a
flow that in the assumption of small angles of attack exactly
satisfies the boundary conditions -and, therefore, wets the
body of revolution considered. This method is given in a
form. that permits its application to practical problems and
requires either numerical or numerical and graphical ealcu-
lations of the same type as the calculations used for the
analysis of the flow around bodies at zero angle of attack.
The method can be applied to cases in which the entropy
variations can be neglected or are zero. In these cases the
terms that contain the entropy variations become zero.

1 Supersedes NACA TN 1808, “The Method of Charecteristics for the Determination of Supersonic Flow over Bodles of Revolntion at Small Angles of Attack' by Antonfo Ferri, 1948.
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SYMBOLS
z,9 8 cylindrical coordinates (fig. 1}
o polar coordinates (fig. 8)

14 local velocity (function of z, ¥, 6)

u, v, w velocity components in cylindrieal coordi-
nates (v along z-axis, » along y-axis, and
0 normal to meridian plane)

Ury Uy, W -velocity components in polar coordinates
(v, along r, », normal to r in meridian
plane, and w normal to meridian plane)

Vv, limiting velocity corresponding to adiabatic
expansion to zero pressure

p pressure

I density

¥ ratio of specific heats

speed of sound (a’='y f)

a angle of attack of body

g Mach angle (sm B= V

& angle between velocity V and z-axis

" angle between the axis of the cone tangent
to the shock and the axis of the body

T angle at the apex of the cone tangent to the
shock

) W tangents to the characteristic surfaces in
the meridian plane ¢=Constant

vy velocity component normal to the shock

e surface

o velocity component along the generatnx of
the cone tangent to the shock

w velocity component tangent to the cross
section of the cone tangent to the shock

(1] angle hetween the tangent to the shock
and the axig of the body

AS entropy variation for unit mass

n normal to the streamline in the pIane
¢=Constant

N normal to the surface of the shock

HLK?Z coefficients defined by equations (24)

¥ | coefficient defined by equation (41)

& coefficient defined by equation (45)

D, D, coefficients defined by equations (55)

Ay, Ay, Py, Py, T coefficients defined by equations (60)

R radius of the hedograph diagram

Subsecripts:

0 free-stream flow quantities

1 flow quentities for the condition of zero
angle of attack

2 flow quantities related to the effect of

angle of attack as defined in equations
(5) and (11)
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FicUnk 1.—Cylindrical coordinates and corresponding veloclty components.

The prime () represents quantities in front of the shock
and the double prime (’’) represents quantities behind the
shock.

EQUATION OF MOTION FOR FLOW AROUND A BODY OF
REVOLUTION AT A SMALL ANGLE OF ATTACK

Consider a cylindrical coordinate system in which the
r-axis is coincident with the axis of the body of revolution,
the y-axis is normel to the z-axis in any meridian plane, and
the position of every meridian plane is defined by the angle
6 measured with respect to the meridian plane that contains
the direction of the undisturbed velocity (fig. 1)

Euler’s equations of motion for steady flow in cylindrical
coordinates are

- 10p_ Ou

—;-a—z—s—u+£-u+y—gaw (1a)
19p_0dv dv w!
Tpdy oz _*by +y_b§w——y— (ib)
10p ow, 0w vy

YL whgy vty sty (1e)

The continuity equation in cylindricel coordinates_can be
expressed in the form

a(pu)_‘_bépggz +a$‘;) 0 @

whereas the law of conservation of energy can be written in
the form

Ra 1_3_12_273;») (“[ ov, oW
vy—1\p oz pldz Yoz T3 T ¥z (32)

J_llﬂ_ﬁéﬂ_(au.?_v_ ow '
v—1\p Oy p’by =\ TP oyt oy (3b)

vy (10p p bp) ( , . Ov ow
y—1\pydf p2ydb yoe' ”yaaT"’yao (3¢)




BODIES OF REVOLUTION AT SMALL ANGLES OF ATTACK

" If the density is eliminated from equation (2) by means of
equations (1) and (3) and the qu&ntlty @ is introduced as
defined by

the following equation can be obfained:

ou /. u*
H (-2 (-5

u/ou . O
by+bx)

+_.

bw ou\ ww/ ov bw)__
ybﬂ} < \yoo

In this analysis only small angles of attack will be con-
sidered, and, therefore, only the first-order effect of the
angle of attack will be determined; whereas, the quantities
of the same or higher order than the square of the angle of
attack will be neglected. In this approximeation the velocity
components of the flow around the body can be expressed
in the following form (references 1 to 4):

U=+, cos 8 (5a)
v=1;+ a0, cos § (5b)
W= oW, sin § (5¢)

where u, », and w are functions of- the three coordinates z, ¥,
and 4; whereas u;, o, Us, %2, and w; are functions only of the
coordinates z and ¥ of any meridian plane. The quantity «
is the angle of attack of the body, the quantities with sub-
seript 1 are the quantities existing at the position (z, ) for
the body considered at zero angle of sitack at the same Mach
number, and the quantities with subseript 2 are functions
that take into account the effect of angle of attack.

It will be shown in the following considerations that the
form assumed in equations (5) for the velocity components
permits the boundary conditions to be satisfied in the simpli-
fications assumed. For small angles of attack equation (4)
becomes

(25 (-

Equation (6) is similer in form to the corresponding
-equation for the case of the body at zero angle of attack and

- Inorder to a.nalyze the differences

M,bv)uv,b'w 0 ©

oy 'oz/ a® ' yo8

differs only in the term;

between this expression and the expression for the axial
symmetrical case and in order to obtain another relation that
defines the quantity w, the relation between rotation of the
flow and entropy gradient will now be introduced.
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Between rotation of flow and entropy the following relstion
exists:

curl VXV=;E grad 8 (7

or for small angles of attack

o8 & o dv Ou _ (82)

oz vRB or 0y .

oS a® dv  du\

ay 7B \3z ay) (8)
as a? ow Qv 'uw du ow (80)
y o8 vB ay y bB 708 oz

If n is the normel, in the meridian plane §=Constant, to
the local tangent to the streamline, then .

2 _dS v S u
on~ dxV oy V

@:c h) ©) .

whereas from equation (8¢), when-equations (5) are used,
it follows that -

1a as_ Oy ‘U'UJ2 UYg b_wg)] .
ivao Gyty T3g)|=em e 10
Therefore, the entropy can be expressed in the form -
A8=ASI+C!_ASQ'GOS_ 8 .

(11)

where AS; and AS; are functions only of x and y. Equsation
(11) is valid outside of the vortical layer existing af-the
surface of the body (see reference 5); whereas the entropy
at the surface of the body is constant and equal to the-
value existing at the conical fip. Because no pressure
gradient exists across the vortical layer, the pressure will
be determined outside of the layer and equation (11) will
be used in 2ll the flow field. The presence of the layer must
be considered for the velocity and density distribution at
the surface of the body. At the surface of the body the
entropy is constant and equal to AS;—a AS;. (The meridian
plane 6=0 is defined as in figure 1.} From equa.tnon (11)
it results

awg, dws _ vWatvvsfuu, @t AS,

"y T 2z ] yYB (12)

Equation (6) can be written in the following form:

ai*(l_g_’)_,'_b_v(l v\, »_2urdv, v DS, w
z\!"a) o\l e )y TR Tyae

(13)

=0
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Equation (13) together with equation (12) defines the law
of motion of the flow around the body at small angles of
attack. These equations will be used as a basis for the cal-
culation of the flow field by the method of characteristics
to be treated in a subsequent section.

CONDITIONS AT THE SHOCK FRONT

Equations (5) and (11) represent a stream that wets a
body of revolution at a small angle of attack. In order to
satisfy the boundary conditions at the surface of the body,
the functions wp, #;, and w; must be properly selected.
Equations (6) and (11) must, however, satisfy the boundary
conditions at the shock surface also in order to be & solution
of the problem. It is necessary, therefore, to show that a
ghock surface can exist across which the undisturbed stream
inclined at « with respect to the axis of the body is trans-
formed into & flow represented by equations (5) and (11).

In order to show that the shock boundary conditions can
be satisfied, the following procedure will be employed. A

1

shock surface distorted in & manner to be described is

assumed. Then, the free-stream velocity ahead of the shock
will be resolved into three components: ¢y normal to the
shock in the plane #=Constant, »r tangent to the shock in
the plane #=Constant, and w perpendicular o the plane
6=Constant. Similarly, the flow behind the shock will be
resolved into three components. In addition, each com-
ponent of the flow behind the shock will be divided into two
terms: one term for zero angle of attack and one term for
the difference due to the angle of attack (for example,
w=u;+attz cos §). Then, the conditions of equilibrium at
the shock will be imposed, and it will be shown that the
terms #,, v, and w0, at the shock are independent of ¢ when
the angle of attack is small as initially assumed; hence, the
distorted shock is consistent with the field of flow behind it.
Such a shock surface can be obtained by deforming the shock
surface produced by the body when the angle of attack «
is zero in the following way (fig. 2):

When a=0, the shock surfice is a surface of revolution
in axis with the body; therefore, ii OP,OP’ is the curve
intersection of the shock with the meridian plane 6=0,
then for =0 the tangent AQ at any point Q of the curve
OP is the generatrix of a circular cone having the vertex af
a point A of the axis and tangent along the circle QQ’ to the
shock surface. The shock surface, therefore, can be consid-
ered as a surface envelope of circular cones having the axis
coincident with the axis of the body but having variable

FIGURE 2.—The shock surface at a=0 and ar0,
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cone angle and variable position of the apex A along the

‘axis AB of the body. For the case of 70 the shock surface

is not a surface of revolution but can still be considered,
for small angles of attack, as the envelope of the same
circular cones considered for the case a=0. Thess cones
have the same apexes and the same cone angles as the cases
for «=0 but do not have the axis of symmetry AB coincident
with the axis of the body AB although they are rotated in
the plane #=0 with respect to the body axis. The angle
n, through which each axis of the cones must rotate in the
plane 6=0 with respect to the axis of the-body, is not
constant but varies for each cone considered. For example,
the cone AQQ’ tangenf to the shock surface for «=0, when
a7 0, must be rotated by an angle » to the position AQ,Q\’;
the axis AB, remains in the plane 8=0.

The shock surface 0 generated is consistent with the flow
represented by equations (5) and (11), and this can be shown
in the following way:

Consider a point P of the shock produced by the body at

an angle of attack, and consider the cone tangent to the
shock at the point P (fig. 3). Call ¢ the semiangle of the
cone with respect to its axis of symmetry. The axis of this
cone is inclined at an angle # with respect to the axis of the
body and lies in the plane 8=0.
" The uniform velocity V; ahead of the shock is decomposed
in the three components: oy’ in the direction PB normal to
the shock, vy’ in the direction AP along the generatrix of the
cone, and %’ in the direction normal to the plane APB.
These components are, at small angles of attack,

' = Vy sin o— Vo(a—n) cos o cos 8 (14a)
vz’ =V, cos o+ Vo(e—x) sin o cos 8 (14b)
W' =—"Vy(ez—17) sin 8 (14¢)

Strictly, in equations (14) ¥ must be written in place of 8;
but, for small angles of attack in equations (14), the differ-
ence between ¢ and & can be neglected. Indeed,

y=s+0/

where & is of the order of o, and ¢ differs from 6 by a quantity
of the order of a.

Yy

Axis of symmetry of the cone ./

p [

tdrigertt to the. ShoCK..c—m—-"" i A
“Axis of the bodly

FieURE 3.~The velocity components In front of and bebind the shock.



BODIES OF REVOLUTION AT SMALL ANGLES OF ATTACK

The velocity components behind the shock are (fig. 3)

vy'/ =1 sin c—v cos oy cos 6(z sin ¢+ cos )  (158)
o'’ =u cos o+o sin ¢-}7 cos 8(» cos c—u gin ¢}  (15b)
w''=w-9(u—r cot o) sin 6 (15¢)

where «, v, and w are the velocity coniponents behind the
shock in eylindrieal coordinates in axis with the body at the
point P considered.

The velocity components %, 7, and w at the point P can be
expressed in the form given by equations (5), in which the
components ¥, and », are the quantities obtained at the point
P for the condition of «=0 and are direct functions only of
zand y. The point P, however, is a point of the shock, and its
«coordinates = and y change when the coordinate ¢ changes;
therefore, the velocity components %, and #; at P also change
with 8. In order to separate the part of the components «,
2, and w dependent on ¢ from the part independent of @, the
velocity components %, and », at P will now be expressed as a
function of the flow properties at a point P; near P, having a
constant value of z and ¥ for every value of 6.

Now, it has been assumed thet the angle of the cone o
tangent to the shock at the point P is equal to the angle of the
cone tangent to the shock for the condition of zero angle of
attack at the point P; (fig. 4). The point P, is obiained on
the shock by rotating the cone APQ tengent to the shock for
the condition =0 through an angle 7 around the axis AN
normal to the plane §=0 at the apex A of the cone. Because
for the condition of zero angle of attack the velocity com-
ponents u; and », are independent of the coordinate 8, the
velocity components %; and »; at P(zs,y:) (fig. 4) are equal
to the velocity components at Py(xp,ys) in the plane AP,C.
Therefore, if AN is the distance P;P;,

’E]_P +(bN e, (168.)
- di
V=01, +(38 , AN (18b)
where (fig. 4)
AN=2" o5 17)
CcosS o

Substituting equsations (5), (16), and (17) in equations (15)
results in

24" =(u, 8in ¢ —v; €08 ¢)p -+ a cos 22 50 ¢ —v; cOS o)p,+
1 cos 8(u, cos o+v; sin. o)p +

.Plﬂ

cos 6<aNsma-—a—A7cos<r . (18a)

22" =(#; cos ¢-+v, Sin o)p,+a cos Ku; cos ¢+v2 sin o)p,—
7 cos 6(u, sin ¢ —v; cos o)p,+

9?2172

208 co8 G(aN cos o--[-aNsm )

‘!D”=&'ngi sin B+n(u1—v1 cot-a)pl sin ¢

(18b)

| {18¢)
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Q
B Q,.
Py
1
iB
: L/2)
X T ap, C C
/ R pxis of the cone? PR
o Axis of the body’

FI6URE 4.—The velocity components behind the shock for a0 as a fanetion of the velocity
components behind the shock: for =0,

For the condition of zero angle of attack at P; _
(198)

(16b)

o, = sin o—1; COS @
vz =% €08 ¢+ 01 sin ¢

and for the condition of the equilibrium at the shock at zero
angle of attack

Vocos a=vr” (20a)
oir? Vasia =L L (Vit—0r,") (20b)
At the point P for the case of a small angle of attack,
—1 -
(oa’ 05" )e=p g (Vi—ve")e (212)
‘DTP” =v1'P' (2 lb)
w’ =w’ (21¢c)

If equations (19) are used, equations (18a) and (18b) can

‘be written in the form

(o) p=(vw,")p, + e cos 8 (vx,")p, 7 cos 0 (v2,")p,

o (5
Py

(vT’QP;(vT1’0PI+a cos 0 (vr,”")p,—n cos 8 (1]5{1”).1,!-{-

zp 1 . UTIH
——cos 6§ W‘
coS o Py

Therefore, from equations (14}, (20}, and (21),

—(a—n)Vycos o (vw,)p, T

37?177
cos 0’

zpn 00N,
rr rHr 1 1
Ve sma-(auyz +nvr; +s — 3N

2(v—1)

=== 11 1) (a—7) Vicos o sin o (22a)
(a—n)Vosino=(vz,"")p, a—n(ox,)p,+
Zplﬂ 6'171'1”)
éEF( N />, (22b)



1044

or

(%),

Zs::r}:lo- Vo (avr, )P1 (23a)

(”1“2 )p, tan a[ (.H_ 1) (1 )sm o+
(D) (3, 2 o2 105, ]
) ==(1—=" ’Uq-l-'vl cot o\ 1 (23b)
)P‘ < )+( )pl P (23¢)

In equations (23) the coordinate # does not appear; there-
fore, for the shock considered the functions u;, o, and ws
are independent of 6, and equations (5) represent & flow con-
dition in agreement with the conditions at the shock.

The ratio n/a which appears in equations (23) is independ-
ent of «; therefore, for a given point P;, #/a remains constant
in all the range of angle of attack in which the simplifica-
tions assumed are valid. (Indeed, u;, », and w, are also
independent of the angle of attack (equations (5)). The
values of v, m, Wy, and /e must therefore be determmed
only for one value of the angle of attack.

METHOD OF CHARACTERISTICS FOR FLOW AROUND A
BODY OF REVOLUTION AT A SMALL ANGLE OF ATTACK

In this section the method of characteristics is applied to
equation (13) to establish equations which will permit the
flow field behind the shock to be calenlated by a point-by-
point process. If the flow is anywhere supersonic, equations
(12) and (13) permit the determination of the flow around
a body of revolution at a small angle of attack by using the
method of characteristics. Equation (13) can be written in
the following form:

ou dv oy, .

where
2 R
H—_=1—%:;2 :
L_l__.’f_z . ——
a?
> (24)
Uy
K=—-a'—2'
uyp 1 o8, ow
Z= V7R0n+yae+y,

If ¢ is the angle between the velocity V and the z-axis and 8
is the Mach angle,

tan g=""

sin ﬂ=%

Jere .
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or for smell angles of attack

v P . —_
_ tan ¢—E
and

The tangent to the line intersection of a characteristic
surface with the meridian plane 6= Constant is

A=tan (¢+5)— "'ﬁ VvE*—HL
(25)

N=tan (¢—ﬂ)=§+}—f vE*—HL

where A, is the tangent to a line corresponding to the char-
acteristic surface of the first family and A, is the tangent to &

~ line corresponding to the characteristic surface of the second

family. - The terms A, and A, are solutions of the equations
(reference 6)
' He—2KN+L=0 (26)

Because._ :u, v, V, and @ can be considered to be given by an
equation of the type of equations (5), ¢ and B can also be
written in the form

¢=¢,+ap; cos 8
B=pitaPscost

The characteristic surfaces are not, therefore, surfaces of
revolution but can be obtained, as was true for the case of the
shock, as an envelope of circular cones with their apexcs at
the axis of the body and their axis of symmetry in the plane
#=0 and inclined with the axis of the body.

The determination of the % and v» components of the
velocity in any point of the flow can be obtained from equa-
tion (13) by performing a transformation in order to obtain
a law of variation along the characteristic lines (reference 6).
Indeed, for every point of any meridian plane (for example,
of the meridian plane =0, or ==} two characteristic lines
can be obtained as the intersection of two characteristic sur-
faces with the meridian plane. Along these lines the varia-
tion of the % and v velocity components is determined by the
equations of characteristics that can be derived from equa-
tion (13). Assume that at two points P; and P, (fig. §) of
the meridian plane 8=Constant (for example, =0, or f=r)
the velocity components are known. From equations (25)
the tangents to the characteristic surfaces in this meridian
plane can be drawn and the velocity components « and » at
the point Py, intersection of the two tangents, can he ob-
tained in the first approximation.

The equations of characteristics can be obtained by
analyzing equatmn (13) along the characteristic lines given
by equation (25) in the following way: If du and dv are the
variations along the characteristic lines,

du Ou
da: ax"l'()‘n}‘t)ay
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Fiavee 5—The amilysfs of the flow with the characteristics system.

or (see equation (9))

.du ou a® oS
da: a$+o\mkb)a (RG:XD)VRV on
dv
dm am +(l¢, XD) ay (278’)
then
du_du Xciv }\,b-v 7\ a* oS

(27b)

dz ox' “dz oy " yRVon

If equations (27a) and (27b) are substituted in equation (13)
and equation (26) is used, along the charscteristic line of
the first family defined by

y_— j— _i_

du, dv  a?
= TN yRVdn(H ")+( +ybﬂ)H 0 (28b)

and along the characteristic line of the second family defined
by

B x,=ton (p—6) (280)
there results
dfu, a?

dz 7\“d:z: VR dn(H }‘”)+<y+ybﬂ)H =0 (28d)

Equations (28b) and (28d) contain the term
small angles of attack

g%’ but at

a_w‘:w_ga cos 0=1§n cot: &

yob Y
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é.nd_, therefore, aaaua is known at the points P, and P;. The
value of the entropy is also known at the points P; and P, and,

therefore, the value of @ can be determined (reference 6)

dn
as ASp;—ASp,
dn ' sin 8
(z2,—2p,) cos BLo)le +(x1’= 2z,) [cos (6—8)

(29)

From equations (28) and (29) the values of « and # can be
determined in the first approximation for the point P;. In
order to determine the value of w at P;, the following Proce-
dure can be used:

If ¢ is the projection of the streamline in the meridian
plane considered (fig. 5) and P; is & point near P; and P,

de O wg

ds by ‘H_ b : cos o )
a’w; v +a'Wg % .
ToyV'iozV
or from equation (12)
ow,  vw,tovvituu, sin’fVAS, (30)
ds yV vRy
Now (fig. 5)
g )
Wa =, + wn (-Epa Tp) (m:_?;i—«ﬁ_) (318}
Wa, wgps-i-( ) (z2,—22,) co;((’z _B__ B.1e (31b)
and
d_'ws_ — . Q:U’E_w*x e
dn _sinf _sinf§ |
T )| o cos BB L. T(%%™ %% 205 (6—B)
; (32) .
Therefore, ’ .

The values of u, 7, w, AS, u;, o5, and AS] are known at the
points P, and P;; therefore, the values of 1, v, s, and AS;
st the same points can be calculated from equations (5) and
(11). (The values of 2, »;, and AS; at those points are
known from the determination of the flow for «=0.) There-
fore, from equations (30) to (83) the valus of w» at P; can
be determined.

After the velocity components u, », and w at P; have been
determined in the first approximation, & second approxima-
tion can be determined by sssuming the average values
between the corresponding values at the points P, and P;or Py
and P; for all the coefficients. After the velocity components

at a point P; have been obtained, the velocity components at-

any other point having the same z and ¥ coordinates as
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P, but a different coordinate f can be ca.lculated from
equetions (5).
For practicel calculations, equations (28) can be trans-
formed in the following form:
A.=tan (8+¢) (34s)
av
V4 ¢ tanf— [(_+be0 tan §—
sin®g dS sin 8
1R dn |e0s (618 20 (345)
Np=tan (¢—p) (34c)
8N ¢
97 +dg tan o] (224205 ) tan o+
sin? 8 dS sin 8
YR dn_|cos (¢—B) dz=0 (34d)
Ldws_ 1Vs_ws . sinfAS,
Vds yV Vy +B Ty (340)
and
¢=¢,tagp; cos 6 (35)
where '
-.92 Uz .
¢’=T7_1 cos qb;—-ﬁ- sin ¢ (36)
and _
V=V,+aV,cos 8 (87)
where
V=1, cos ¢;+v2 8in ¢ - (38)

At the surface of the body outside of the vortical layer the
celculations are similar to the case of zero angle of attack
because the entropy at the surface of the body is known
in every meridian plane and the value of 6 is given. Equa-
tion (34e) gives the variation of w; along the body outside of
the layer; therefore, the value of w; can be obtained directly
from another point on the body in the same meridian plane.

At the surface of the shock the system of calculations is
similar to the system for zero angle of attack. In figure 6
the point Pj is at the intersection of the tangents to the first
characteristic surface at P: and to the shock at P; in the
meridian plane #=Constant. The equations of the shock
and equation (34b) must be verified at P, which is assumed
as a point of the shock in the first epproximation. '

Tn the plane #=0, w is zero and the values of V, AS, and
¢ behind the shock are functions only of the value of 2; and
for any value of Q, the values of V, AS, and ¢ can be
obtained from the equations of the shoclk

v _ViV:
Vi Vi

cos (@—a)
cos (Q—¢) Vo

1 I:‘Y+1 Mu i
ten (3—a) L 2 Mgsm®@—a)—1

(39a)

]ta._n (@—a) (39b)
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v 6=0

Shock for
a#0
12
Py
o dy
Voo _th Shock for a =0
) P,
// // PI y.Ps
AT 0 ol
//_/
== i
=0 Axis of the body
FioURE 6.—Determination of & polnt of the shack.
J— ‘R 2 vt 2 o2
A,s'_?_ log. 7(—ﬁ) [ 242 sin? @—)—
4x—1
][Mo sinf(@—a) ' 2 (39¢)
and
V3 2 1
Vi ""IT-Y 1 Mq - _(39d)

If the plane f=r is considered, the sign of « in equations (39)
must be réversed.
From equations (39) the values of V and AS ean be deter-

mined as & function of ¢; then ‘?; and —— d AS as 8 function of ¢
can be evaluated. Now, if ¢p is the dlrect.lon of the velocity
at Py, the velocity at P; will have the direction

bp,=0¢p, 1A

Therefore, the velocity at Py must correspond to & deviation
across the shock of ¢p—a and can be expressed as

d .
Ve=Ver, H(qg),, 24

is the velocity behind the shock corresponding
Ina similar way,

where V‘P;
to the direction ¢p .

dA

Therefore, equation (34b) at the point P, becomes

Ve 1
Vpl —lty VPI V) Aé —tan Be; Ap=

sin qsiw,a cos 6 sin 8 tan B
[ cos (ﬁ+¢)l dot

[AS@I—ASPﬁ(d‘gS)‘P ¢] i br,_y (40)

In equation (40), A¢ is the only unknown and, therefore,
can be determined. From the value of ¢ the value of Op,
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and the velue of Vp, can be determined ; a second approxime~-

tion for the position of P; and its value of the velocity can
be calculated if the corresponding average velues between
P; and P; are assumed for ¢, 8, and all the coefficients of
equation (40).

The value of w at P can be obtained from equa.tmn (23¢)
in which 9 is given by figure 6 as

p=——sin
Py
where =0—o for 6=0 and =c—2 for é==. The value of
o corresponding to the point P, on the shock for «=0 is
given by the relation

Yr, Um
sin ¢ sin @

and yp,=f(op,) is the curve that represents the shock for =0

PRACTICAL APPLICATION OF THE CHARACTERISTIC
SYSTEM

GRAPHICAL NUMERICAL METHOD

"The anslytical part of the characteristic system used for
determining the flow field about a body of revolution at an
angle of attack is similar to the system used for a body of
revolution at zero angle of attack.(reference 6), but the
practicel numerical application is slightly more involved.
In equation (34e) the values of V and AS; must be known
in order to determine the value of w, and must be defermined
from equations (37), (86), and (11), where the velues of V;
and AS; are considered known in the entire flow field and
given by the determination from the case of zero angle of
attack. In the practical case, however, the values of V7,
¢, and AS; have been obtained with the characterisfic system
only in & finite number of points at the intersections of the
characteristic net, and the characteristic net for the case of
zero angle of attack is different from the net used for the
case of & body with & small angle of attack. In order,

therefore, to obtain the values of V; and AS, at the inter--

sections of the characteristic lines for the case with a given
angle of attack, a lengthy interpolation of the velues 17, and
AS; would be necessary if the two characteristic nets for
zero angle of attack and for a given angle of attack were
constructed independently.

_ In order to reduce the numerical work to & minimum, the
two following methods can be used, the first of which is
practical when a graphical numerical calculation is per-
formed, whereas the second can be more convenient when
automafic computing machines are used.

In both cases the calculations start with the determination
of the flow at an angle of attack around a cone when the
body considered is a pointed-nose body of revolution or with
the determination of the shock at the lip of the body if the
body is an open-nose body of revolution. (The tangent to the
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shock at the lip can be determined with the two-dimensional
theory.) The flow around & cone at an angle of attack

has been determined and tabulated in reference 3; whereas
the flow for zero angle of attack has been tabulated in

reference 7. A different method for determining the flow
around a circular cone at an angle of attack is given in the

appendix. It can be assumed, therefore, that the flow along

the first characteristic line of the first family at the end of
the conical region in the plane §=Constant (for example,
=) is known (fig. 7).
For the practical numerical calculations a value of the
angle of attack must be selected. In order to obtain higher
precision, it is convenient to select a relatively high value of

the angle of attack because in this way the differences be--

tween V and V, and AS and AS; are large and, therefore, can
be determined with sufficient precision.

Ususally, when the determination of the flow field for the
case of zero a,ngle of attack is made with a graphical numeri-

cal process, in order to avoid numerical errors of computa-

tions, the value of the intensity and direction of the velocity
are plotted as a function of the position along the character-

istic lines for both families of characteristic lines. The

velocity distribution and the entropy-variation distribution
along the characteristic lines and along the surface of the
body for the case of zero angle of attack can therefore be
considered known. If the distribution is not given, the
values of V; and AS; ‘must be determined as a function of =
along each cheracteristic line of a given family (for example,
of the second family) along the body.

Then the construction of the characteristic net for the

selected angle of attack must start by drawing the first
characteristic line P;PyP5 over the design of the characteristic
net for zero angle of attack (fig. 7).

From equations (34¢), (84d), and (34e) the flow at P, can be
determined. From P, and P, the point P; can be obtained

in the first approximation as the intersection of the tangents.

at P, and P, to the characteristic lines. By using equations
(34b), (34d), and (29), V, ¢, and AS can be obtained in P;

Characteristic net for g smaff angle of aftach
—————— Charocteristic net for zero ongle of attack

FioueRE 7.—Scheme of the characteristie net.
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as for the case of zero angle of attack (reference 6). From

dV d¢ d AS
the variations -~ az’ andﬁ
of V, ¢, and AS at. the point P, can be obtained, where P,
is obtained from the intersection of the characteristic line
P,P; with & characteristic line of the second family in the net
for zero angle of attack. At the point Py, V3, AS;, and ¢, are
known and, therefore, ¢a, V3, AS;, and w; can be obtained.
From the values obtained from the first approximation a
second approximetion can be obtained. From P, and Pj
the point Py can be determined in a similar way, and the
flow at P; can be calculated. By proceeding in a similar
way, all the flow field can be analyzed.

along the line P,P, the values

NUMERICAL METHOD

The equation of motion (13) can be transformed by means
of equations (5) and (11) in a system of equations that
permits & numerical determination of the quantities 17, ¢s,
and AS;. This system is numerically more involved;
however, the characteristic net determined for zero angle of
attack isused. For a small angle of attack,

1 1, ,v=1
-a_;ﬁ—dlz[l-l- G'/]_g

where
¥y—1 1 V:
V[Vz = Th _A (41)
Therefore,
%=&1? (1+ Aacos 6)

Substituting equations (5) in equations (6) results in the
following expression if higher-order terms are neglected:

bu; 6‘01( ;Z) ‘Urﬂh b»ul me)
dz ( 1 +o

oy ' oz
=—acos @ +

Wy ou; <2u,u,+u,’A)+
Yy dz z

bu, uﬁ bv, 20501+012A) bv,(
$<1 O‘q’ ay + 1-

ulmA-]—‘u;v,—I-mu, aul ! aﬂ1)
a,? oy ' Oz

U9y Dug a”l
— ay{am) (42)

Because the left-hand side of equation (42) must be zero
for the conditions at zero angle of attack,

) Vo LA Va
-5 -3

’U;f;l aug a‘Ug +Q=‘0
(43)
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where
Q=-—- oul | 0us”\ 2ustud 10w 0u\ 205t d
or ' Oz a.’ oy ' dy. a,?
bvl 'au; ‘urUz"‘u.zvl
dz Oy a,® (44)

or, from equations (9) and (36),

e 3V1 2UQ+u1 bV; 2U2+01A ¢2V1 aS;
Q VI a; Vl ay al 'YR bn; ’
(45)

The value of all the coefficients at the points P, and P, in
equation (43) can be considered known because _bl and —— baTy,
can be considered known from the calculations for the case
of zero angle of attack. Therefore, equation (43) can be
considered an equation in which the characteristic lines are
equal to the characteristic lines for zero angle of attack

because the coefficients of the partial derivatives %l;s %i;—;)
ba::,, and %;’ are the same in both cases. 'Thus,
(%)= )\1¢=tan (¢1+ﬁ1) (468-)
dy
== J=Ap=tan (d’l_ﬁl) (46b)
dx

Equation (43) can be transformed by introducing the
entropy gradient aa—'i!, ahd the equation of motion along each

charecteristic line can be obtained. From equations (9)
and (11) by means of equations (5} and (37), the following
relation can be obtained:

oS be
on

sz acos §

+

be 0S5, t1+vgacos f

+——¢x00 6 V1+ ‘7261 Ccos BT

(bSl 0S: G) Uy +Ugee OB 6
« co8 Vi+ Vaa cos 6

or, for small angles of attack,

28 28,05, 28, i
Sn —on, T om, *°%° 0+[— (02 Vi—0: Vo) +
aSl (’Ug Vl —U VI)] z COS 6 . , (47)
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. From equations (36) and (38)

Ug=V; c0S ¢y— ¢ Vy sin ¢y (4882)
V= Vg sin ¢1+¢2V1 cos 951 (4:8b)
and
v;=Vi8in ¢
="V, cos ¢
Therefore, -
—35: 1, Vim0, VO % ViV
_ 98 |, 38, vy
==&Vl 7ty 7

Because the term in parentheses on the right-hand side of
this equation represents the variation of entropy along the
streamline, which is zero, equation (47) becomes

oS 085, sz
3n o, + acos f (49)
Then, from equations (9), (41), and (49)
bvz bug Glz ' aSz Vz \ (112 aSl
Pz 0y VRV, om ( FA ) BV e, OO

The equations of motion along the cheracteristic lines de-
fined by equations (46) can be obtained by means of trans-
formations similar to those of equations (27) and are

du,—l—im d'l)g‘[‘DI dz=0 (51)
Rm——gy—m (451‘["51) (52)
d‘uz—l— R]_a dﬂg‘["Dz dz=0 (53)
d >
=72 =tan (¢:—F) (54
where
_ Ws , Vg Glz
D24 24Q) it
1611?1 Vi é Vs 7—1\08,;
a:—u; i N Rsmz‘61 oy V1< ‘szﬂx ]
(55a)
D=(2421Q) o+
(axul—v:t fH"’) TR B bf: (1 sin? 131 DSI:I
(55b)

213637—83———67
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In equations (51) and (53) the coefficients D; and D,

contain the derivatives —+ aV‘ and abzl that must be obtained

from the ansalysis of the case with zero angle of attack.
Now, for every point P the variation of V; along the charac-
teristic line of the first family for the case of zero angle of
attack is

dvi\ _ oV, oV:

dI )lh_ az +XI¢ b‘y (568')
whereas aloﬁg the characteristic line of the second family

dvy\ _dVi,, ¥V

dz ):\“ 5z The oy (56b)

Af every point P given by the intersection of two charac-
teristic lines Ay, and Ay In the characteristic net, the values

@) (ﬂ
&M, 2

from the evaluation of the following equations (reference 5):

%=)\1,=ta.n (61482 (572)

dVl) _ d¢1) sin ¢, sin B, tan B; 1
—tan B cos (i tB) ¥
S, 1 _ simp, _ .
dn, YR cos (¢1+131)—0 (57b)
W) y=tan (61— ) (57¢)
dV]_ d¢1 1 sin & sin 131 tan 1
V1 +t an fy ?l cos (¢:—B1)
d_S_l 1  sin'g o
dn, 7B tos (B (574)
Therefore, the values
bV1 ?\.m dVl ) K;a dV]_
oz Ru—xm dzx )Lu Rn'—'xm _dﬂ: )ku (58&)
and
oV, 1 dVl) dVl) n]
b’y Ap—MNg [ 7*15 (5 Sb)

can be calculated directly for every point of intersection of
the cheracteristic line {equations (57a) and (57¢)).

After substituting the expressions of equations (48) and

(58) In equations (51) and (53) after some simplifications

and trigonomefric transformations, the following equations - o

can be obtaimed:

Mo ten (6161 (598)

are known, having been obtained
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av, sin®8; 1 08,
v, wend 1“"M—[cos w08 (i B 7R omy T it

Er_g ’Wg 1 tan ﬁl Sm 31]
V) T Vl y cos (¢1+B1) dz=0 (59b)
)\w'—f%‘—‘tm (¢1—By) (59¢)

av, sm’® B, 1 08, V2
v'l'tan B1dpe— I:c__—os (3—B.) YR om s—+¢:.40— P2+

w, 1 tan B, sin B,

Vlym dzr=0 (59d)
whers
1 sin g, sin* 61 o8,
A= cos B; cos (g1 8L ¥ sin (¢ —B1)+ YR on,
1 av, cos (¢ —B1)
V1 dz )m gin 8, ] (60a)
. 1 sin B; . Vay_BinfB; 08,
AQ—COS B cos (¢ —By) [ Y sin (411 1) vEB om
1 dVy\ cos (¢ +8)
V.\ dz )x sin 8; (60b)
2 8in3 B, o8
P‘— )xl..(cos B ) ['rR cos (¢:+B1) Ony

1 sd V:) cos (¢1—B1)
V1 dx /aycos®B; cos (¢ Bi1)

{(60c)

1 © 28in?*B oS,
P~y )Ma (cos2 B 1)+ l:'yR cos (¢1—B1) O n1+
dV cos (¢, 1)
TT: dx )Ru cos?B; cos (¢ — 31)] (60d)
T= 1 + i 1 - Tttt oL —ee - '(603)

2 sm’ B
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The coefficients A; and 4, and the value of g—% have been
1

determined for the flow at zero angle of attack and

s 3__ Szf’z - S’*’x

E’I_?— sin B sin 8 T
' (27, —25,) [cos (11— . :I +(Ery2n) I:GOS (é1 '11 B1) e,
(61)

_d8, Sy =S,

dn1 SIP,—SIPI

The practical use of equations (59) is identical to the use

of the corresponding equations (57) for the case of zero
angle of attack. (See reference 6.)

CONCLUDING REMARKS _.

The method of characteristics has been applied to bodies
of revolution at a small angle of attack. Ouly the first-
order cffects of the angle of attack have been counsidered.
The system developed takes into account the effects of the
entropy variations on the flow phenomena and determines a
flow that exactly satisfies the boundary couditions within
the limits of the simplifications assumed.

The application of the method to practical problems has
been discussed and two systems are given. The first method
is numerical and analytical and requires less numerical
computation but requires the construction of aunother char-
acteristic net; whereas the second method is only numerical
and uses the characteristic net and some of the numerical _
computations made for the calculations for zero angle of
attack. .

LANGLEY AERONAUTICAL LABORATORY,
NatonNaL ApvisoRy COMMITTEE FOR AERONAUTICS,
LancrLey FigLp, Va., Norember 22, 1948.



APPENDIX
DETERMINATION OF FLOW PROPERTIES AROUND A CIRCULAR CONE AT A SMALL ANGLE OF ATTACK

Assume a polar coordinate system r¢,8. Call #, the
velocity in radial direction, z, the velocity in normal direction
to r in the meridian plane §=Constant, and w the component
normal to the meridian plane (fig. 8); that is,

_dr
T dt

. _rdy
dr
_rdfsin ¢
- dt

If the phenomenon is conieal,

ov,
or

o,
or
dw

5—0

=0

=0

and

Therefore, Euler’s equations are

w v, vLt+w?
rsin 06 r

Vs o,
r oy

_v_,iba,,_l_ w b_u,_:_l_i dp | v, —wcot ¥
r Y ‘rsinyg 08 ' prog r

=0 (62a)

=0 (62b)

1_,b_w+ w ow, 1 E)p_,_ AT 0.w cot —0
r oY rsmg&bBTrpsmgbbe r

(62¢c)

The continuity equation is

2pv,sin Yy+v,siny E,1!,+:: sin ¢ aa?;+

Vap COS Y+ a_p+ba_ (63)
and the energy equation is
Y lbp pap) by, Ov,
7—1\s 20 2?08 v e w57 ) (64)
Y (1dp_p3p\_ au, bu,. a_'w) 64b
—T\Gdy orey) T\t By T gy ) B4D)

Un
U

-

Un

Pry.6)

¥

A /4
Axis of the coordinate system

FicrrE 8.—Polar éoord.lnata and velocity components.

Combining equations (62) to (64) results i in
9 .2+w aus Dy
2, (2—T—Z)+ﬂn cot ;H— (1 )—I—

(1 '-') 2wv,_ 00n
smv,bbo a® siny o8 '

WO, 00, ow
¢t \siny 08 oY

=0 - (65)

For small angles of attack the velocity components can

"be expressed in the form (references 1 and 3)

-v,='u,.1—[— vy, cos 6
Va=0n by, cos § (66)
Ww=—qaw, sin @

when the second- and higher-order terms of the angle of
attack have been neglected. Equation (65) at small angles
of attack becomes

(25

Vv

e,”\J_ ow -
by&(l o) Tsmy o0 0 (67)
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The shock is a circular conical shock having its axis inclined
at an angle n with the axis of the cone. The quantities with
gubscript 1 are the quantities corresponding to the case of
zero angle of attack. (Indeed, the cone is & particular body
of revolution and, therefore, the considerations made for
the case of bodies of revolution are still valid.)

From equations (62a), (62b), and (64b), there results at
small angles of attack

10p v¥0p__

pOY o0V

In the meridian plane §=Constant, therefore, the transfor-
mation behind the shock is isentropic for small angles of

attack. If —aAS; sin 6 is the variation of entropy in a direc-
tion normal to the meridian plane #=Constant (reference 5),
28 _ .
smygos @AS:snd

where AS, is constant and independent of ¥ outside of the
vortical layer. From equations (62¢) and (64a)

2

GRAS,—o. >0 dain Y+w; (v, sin ¢+, cos ¥)+ o, Vgt Paln,

(68)

If the variation of entropy is small and the term AS; can be
neglected, equation (68) becomes

wy 8in Y= —v,, (69)
Equation (67) can be written in the following form:
LAY atws cos 6
(v,—[—w) (1 —-E;)——‘D,-—‘D“ cot \0———Sin ‘# (70)

By use of equation (67) and by considering the conditions .

for zero angle of attack, equation (70) becomes
OV, 1;,1)
(o) (=55
=-—0,,| cOt Y+ 0”1 1-”"1') —-—r*vr‘+””1 Y]
12
a;’

1 v, +v cot.:.b

1— ,,1 sin ¢

(71)

a;’

Equations (68), (70), and (71) permit the determination
of the flow around the cone at an angle of attack by means of
a step-by-step calculation when the calculation for a=0
has been performed. Consider the hodograph plane up,
and consider the variation of velocity components v, and o,
in & meridian plane 4=Constant (fig. 9). Assume that for
a given value of ¢, and 6, the velocity components »,, v,, and

.0 e
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v

Cy

i vr)Pa

\<¢a.*A*'Vb

N

{ Unp /"r&:b

Q
(Pnlp,

Qw
Froure 9.--The hodograph disgram.

w are known. Point P, of the hodograph diagram represents
the velocity vector QP. corresponding to the velocity at
every point of the space of coordinate ¥, in the plane

=Constant; whereas OQ, represents the values of (v.)x,
a.nd Q.P. represents the values of (v;},. Now, the radius of
curvature B, of the hodograph diagram is along the line
Q.P: and has a value given by (reference 1)

_( ’_I_bu,,

and, therefore, can be determined from equation (70). At
P, the values of v, and v, are known from the calculation
for a=0; therefore, av,, and ov,, can be determined from
equations (66). Equation (71) can be used in place of
equation (70) in the following way: The vectors OQ, and
Q.P. represent the values of v, and »,, at P,; the vector OP,
in the hodograph diagram gives the values of V7; therefore,

O,
-R! —"(ﬁr,'!" ’ 2

can be obtained from equation (71).

Now at any point P, the radius R,, given from equation
(70), or the radius R, , given from equation (71), is known;
therefore, from the quantities at P, the quantities at P, of
coordinate y¥»=y,+A¢ can be obtained by consfructing a
circle of center C, (where C,P,=R; or R, ) through the point
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P, until the point P, along the line C,P, which is g straight
line from C;, is inclined by y¥,-+Ay with the u-axis. There-
fore,

(v2)vrap=(0a)y cos Aq+(B—u,)y sin Ag

(@) e+a9=(px)¢ 8in Ap—(R—v,)y cos An+Ry

Ingsmuch as the values of ¢, and v, at P, have been ob-
tained, the values of v, end v, can be determined by
differences from the values for =0 with the use of equa-
tions (66). (If equation (71) is used, the values of 7,, and
v,.z are obtained directly.}) With equation (68) the value

of W can be calculated at P,, and the value of w; at P;
can be obtained. Indeed, AS, is constant and has been
determined from the conditions at the shock. In a similar
way, ell the hodograph diagram can be constructed. If
necessary, for every peint P, a second approximation can

be determined.
The calculation of all the fow field must start at the shock.

For the calculations it is convenieut to choose a coordinate
system having the axis of the conical shock as the axis of
polar coordinates. In this case, the velocity components
¥y, ¥y, a0d w behind the shock can still be expressed in the
form of equations (66). - Indeed, from equations (15) and (19),

: 7 aU’H
f:..=[v,l+a cos @ (v,,z—l— ):L

=ﬂ,1q+(a—q)v,,3‘ cos @ (721)
z:,,=[-v,.1—[—a cos @ <v,z+% ﬂ,l)l

=2, —I—(az—'q)tz,2 cos @ (72b)
W,=a sin 6(102 m:,b Z v,,l)a

=(a—7)w,, sin 8 (72¢)

where »,, v, and w, are the components referred to the
axis of the conical shock, whereas the components v, v,,,
and w, are referred to the exis of the body. Indeed, 7/a
is constant. '

The caleulations start at the shock. After determining
the flow field for zero angle of attack, the angle of the conical
shock ¥, is known and the velocity componeuts », and o,
with respeect to the axis of the shock for every value of ¢ are
also known. In order to determine the flow for the case of
a small angle of attack, the direction of the undisturbed
velocity must be rotated at a small angle a—= with respect to
the axis of the shock (fig. 10). The value assumed for a—1
fixes the value of a for which the calculations are performed.
(This value of « is not yet known but is obtained as a result
of the calculation.)
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v

6=0

Axis of the shock
fora#0 or
axis of the core

u

¥o Axis of the cone

for a¥0

FI6uRE 10.—Choies of the axis for the hodograph diagram.

For a unitary value of —, the component #,, behind the
shock can be determined from equation (14b) (v,,=v7)
and the component w, from equation (i4c) W'=ws);
whereas v, can be determined from equation (2la)
(vx,=—vx'") and vy’ is given by equation (14e). The value
of entropy (x—7)AS; cos § can also be determined from the
equation of the shock, for example, from the difference
between AS and AS;. When v,,, v,,, ws,, and AS; are knewn
behind the shock, all the flow field can be obtained by means
of equations (68) and (70) or (71). The hodograph diagram
can be consfructed, for example, in the plane 8=m.

The axis u has been chosen in the direction of the undis-
turbed velocity for zero angle of attack that corresponds to
the axis of the shock for @=0. For « the undisturbed ve- -
locity has been rotated at a—n with respect to the u-axis
(fig. 10) ; therefore, the axis of the shock has not been changed.
The velocity OP, behind the shock of figure 9 must be decom-
posed into (1) & component P,Q, inclined at ¢, and correspond-
ing to v, if equation (70) is used or to Ur,, if equation (71)
is used and (2} a component 0,Q. correspondmg to 2, OT Vg, ,

In this way, the values of v, and »,, that must be used in

equations (68), (70), and (71) are the values obtained from =

the calculations for zero angle of attack at the same value
of ¢ (that is, y=y¢, for P,). Because the calculations start
at the shock, the construction of the hodograph diagram
must be performed in the direction of decreasing values of .
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At the surface of the body for #=a, the component v,
must be zero; therefore, when the radius of the hodograph
diagram passes at the origin of coordinates « and », the cor-
responding value of ¢ is equal to y¥,+n where ¥, is the angle
of the cone (fig. 10). Because ¢, is known, the value of
and, therefore, of « can be determined.

The components », and v, in the plane §=0 or == do
not, change when, for the axis of reference, the axis of the
body is assumed; but the corresponding value of ¢ is in-
creased at g (fig. 10). The value of wy changes; the value
of w,'’ can be determined from the value of wy by means of
equation (72¢).

For practical calculations it is conyenient to use nondi-
mensional coefficients obtained by dividing all the velocity
components by the limiting velocity V;. The expression
a/V, can be obtained from equation (39d).

For small values of «, the values of v, v, we, and g/e
are independent of « and, therefore, the flow for every other
value of « can be obtained from this determination. The
calculations can be graphical or analytical.
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